




# Система пожарной автоматики и сигнализации $\ll$ Спрут-2 $\gg$

### МТС-х Пороговый модуль контроля термокабеля

Руководство по эксплуатации АВУЮ.634.211.056 РЭ



Настоящее руководство по эксплуатации предназначено для изучения принципа работы и эксплуатации порогового модуля контроля термокабеля системы Спрут-2 ABУЮ.634.211.056 (далее MTC-х). Руководство является документом, удостоверяющим гарантированные предприятием-изготовителем основные параметры и технические характеристики MTC-х.

Документ устанавливает правила эксплуатации МТС-х, соблюдение которых обеспечивает поддержание прибора в рабочем состоянии.

Обозначение при заказе: МТС исполнения x АВУЮ.634.211.056, где x - количество каналов обнаружения (от 1 до 3).

#### 1. Назначение изделия

Модуль MTC-х — это блок обработки, который совместно с термокабелями является извещателем пожарным тепловым линейным (ИПТЛ), предназначен для контроля состояния чувствительных элементов (термокабелей) и выдачи дискретных сигналов об их состоянии в линию связи.

Типы поддерживаемых термокабелей, используемых в качестве чувствительного элемента:

- ГРИФ-термокабель (Эрвист) рекомендуется,
- ИП104 (GTSW) (Спецприбор),
- PHSC (Protectowire),
- LHD (Thermocable),
- ИПЛТ (АО Спецавтоматика).

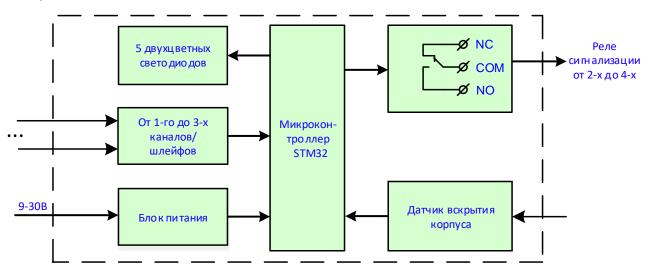
Параметры контроля состояния (класс теплового канала обнаружения, инерционность и другие) зависят от типа, применяемого термокабеля.

Модуль обеспечивает работу с барьерами искрозащиты ШСБ-12/ШСБ-12 и ШСБ-ТК.

#### 2. Технические характеристики

| Технические характеристики                                                                                          |                    |                                                        | MTC-2 | MTC-3 |
|---------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------|-------|-------|
| Количество каналов (шлейфов)                                                                                        |                    | 1                                                      | 2     | 3     |
| Допустимое удельное сопротив                                                                                        | зление термокабеля | 0,05÷0,70 Ом/м                                         |       |       |
| Длина термокабеля, подключённого к каналу (шлейфу)                                                                  |                    | 0÷3000 м (при 0,656 Ом/м)<br>0÷10000 м (при 0,19 Ом/м) |       |       |
| Сопротивление подводящих проводов при отсутствии барьера искрозащиты или при подключении барьера искрозащиты ШСБ-ТК |                    | не более 300 Ом                                        |       |       |
| Сопротивление подводящих проводов при подключении барьера искрозащиты ШСБ-12/ШСБ-12                                 |                    | не более 170 Ом                                        |       |       |
| Контроль исправности канала                                                                                         | (шлейфа)           | КЗ/обрыв                                               |       |       |
| Напряжение/ток питания канала (шлейфа), не более                                                                    |                    | 5,0 В/1,5 мА                                           |       |       |
| Контроль вскрытия корпуса                                                                                           |                    |                                                        | +     |       |
| Выходы Пожар $^1$ , «сухой» перекидной контакт                                                                      |                    | 1                                                      | 2     | 3     |
| Выход Авария $^1$ , «сухой» перекидной контакт                                                                      |                    |                                                        | +     |       |
|                                                                                                                     | Авария             | +                                                      |       |       |
|                                                                                                                     | Питание            | +                                                      |       |       |
| Световая сигнализация:                                                                                              | Канал 1 (Шл1)      | +                                                      | +     | +     |
|                                                                                                                     | Канал 2 (Шл2)      | _                                                      | +     | +     |
|                                                                                                                     | Канал 3 (Шл3)      | _                                                      | _     | +     |
| Электропитание (≤ 2,0 Вт, см. Приложение)                                                                           |                    | =11÷30,5 B                                             |       |       |
| Средний срок службы                                                                                                 |                    | не менее 10 лет                                        |       |       |
| Диапазон рабочих температур                                                                                         |                    | от -40°C до +55°C                                      |       |       |
| Допустимая относительная влажность                                                                                  |                    | до 93% при 40°C                                        |       |       |
| Степень защиты оболочки                                                                                             |                    | IP65                                                   |       |       |
| Климатическое исполнение                                                                                            |                    | УХЛ 3.1.                                               |       |       |
| Macca                                                                                                               |                    | не более 0,5 кг                                        |       |       |
| Габариты, мм (ширина х высота х глубина)                                                                            |                    | 160x160x60                                             |       |       |

#### 3. Комплект поставки


| Наименование                          | Количество |
|---------------------------------------|------------|
| Пороговый модуль контроля термокабеля | 1          |
| Паспорт АВУЮ.634.211.056 ПС           | 1          |
| Пластиковый шнур                      | 1          |
| Резистор 510 Ом ±5 %; 0,25 Вт         | 3          |
| Резистор 3,3 кОм ±5 %; 0,25 Вт        | 3          |
| Гермоввод (для MTC-1/2/3)             | 6/7/8      |
| Заглушки                              | 6          |
| Шуруп                                 | 4          |
| Дюбель                                | 4          |
| Джампер                               | 1          |

-

<sup>&</sup>lt;sup>1</sup> 125VAC/0,5 A; 24VDC/1A

#### 4. Устройство и принцип работы

Функциональная схема МТС-х

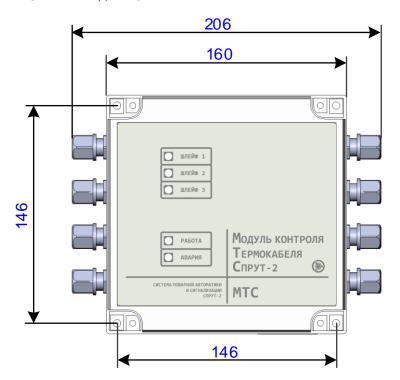


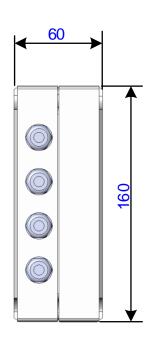
Принцип работы прибора основан на измерении сопротивления цепи, подключенной к измерительному тракту прибора (схему подключения см. в **Приложении**). В зависимости от величины сопротивления подключенной цепи прибор будет индицировать то или иное состояние согласно таблице:

| Состояние цепи    | К   | 3   | Сраб | отка | Норма |      | Обрыв  |
|-------------------|-----|-----|------|------|-------|------|--------|
| Сопротивление, Ом | MIN | MAX | MIN  | MAX  | MIN   | MAX  |        |
| Сопротивление, Ом | 0   | 360 | 485  | 3410 | 3620  | 6680 | >10000 |

Состояние «Неисправность канала (шлейфа)»:

- также формируется, в случае если после включения, сопротивление на входе канала (в шлейфе) не попало в диапазон «Норма»;
- сбрасывается только при переходе в состояние «Норма».


Состояние «Сработка» сбрасывается только при отключении питания прибора.


Порядок работы светодиодов.

Приоритеты режимов расположены в порядке убывания.

| Свет индикатора    | Светодиод «Шлейф №Х»               |
|--------------------|------------------------------------|
| Красный            | Норма - Сработка                   |
| Желтый 0,5 Гц      | Авария – Авария канала (шлейфа)    |
| Зеленый            | Норма – Нет аварий канала (шлейфа) |
| Свет индикатора    | Светодиод «Работа»                 |
| Желто-зеленый 1 Гц | Авария - Вскрыт корпус прибора     |
| Зеленый            | Норма – Нет аварий питания         |
| Свет индикатора    | Светодиод «Авария»                 |
| Желтый 1 Гц        | Авария - Получен сигнал «Авария»   |
| Зеленый            | Норма - Нет сигналов «Авария»      |

#### Внешний вид МТС-х





#### 5. Указание мер безопасности

- 5.1. Обслуживающему персоналу в процессе эксплуатации необходимо руководствоваться «Правилами техники безопасности при эксплуатации электроустановок потребителей напряжение до 1000 В» и «Правилами технической эксплуатации электроустановок потребителей».
- 5.2. Ремонтные работы производить на предприятии-изготовителе или в специализированных мастерских.

#### 6. Размещение и монтаж

- 6.1. Установка МТС-х производится на вертикальную поверхность.
- 6.2. Монтаж MTC-х и соединительных линий производится в соответствии со схемой электрических подключений, приведенной в Приложении.
- 6.3. Клеммники МТС-х обеспечивают подключение проводов сечением до 2,5 мм2.

#### 7. Подготовка к работе

Проверить правильность произведенного монтажа. Подать на MTC-х напряжение питания.

#### 8. Техническое обслуживание

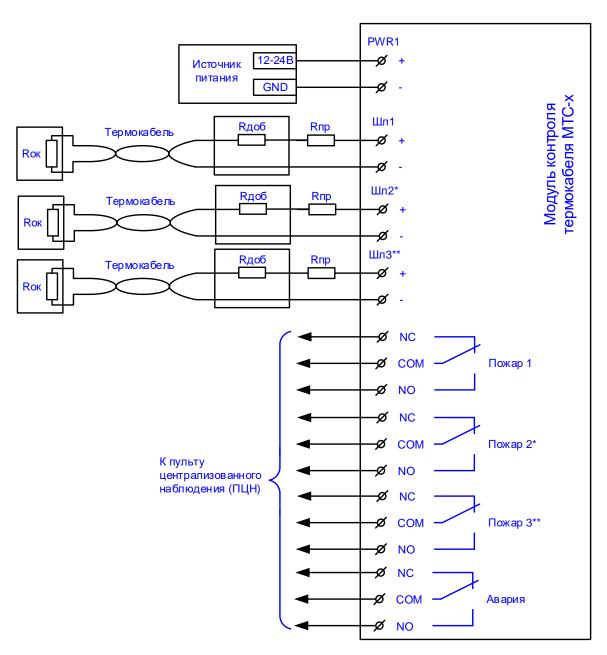
- 8.1.Общие требования к техническому обслуживанию должны соответствовать РД 009-02-96 «Установки пожарной автоматики. Техническое обслуживание и планово предупредительный ремонт».
- 8.2. Для проверки работоспособности реле необходимо омметром прозвонить контакты всех реле при отключенном питании прибора. Затем установить джампер на разъем «Тест» на печатной плате прибора и подать питание. После подачи питания светодиоды (в зависимости от исполнения прибора) зажгутся на 1 сек сначала красным, затем желтым и зеленым светом. После проверки светодиодов включится светодиод «Авария» (цвет свечения зависит от исполнения прибора). Далее необходимо однократно и кратковременно нажать на датчик вскрытия корпуса, после чего все реле будут во включенном состоянии. Повторить проверку контактов при помощи омметра и убедиться, что все реле сработали.
- 8.3. Данные о техническом обслуживании необходимо вносить в журнал, содержащий дату технического обслуживания, вид технического обслуживания, замечания о техническом состоянии, должность, фамилию и подпись ответственного лица, проводившего техническое обслуживание.

#### 9. Транспортирование и хранение

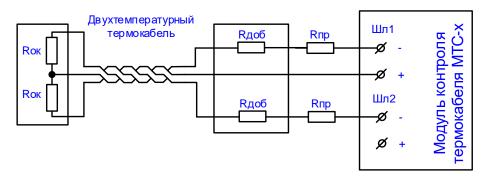
- 9.1.MTC-х следует хранить на стеллажах в сухом отапливаемом и вентилируемом помещении при температуре от 5°C до 40°C, относительной влажности до 90 % при температуре 25°C.
- 9.2. Срок хранения в упаковке без переконсервации не более 3 лет со дня изготовления.
- 9.3. Транспортирование МТС-х производится любым видом транспорта (авиационным в отапливаемых герметизированных отсеках самолетов) с защитой от атмосферных осадков.
- 9.4. После транспортирования при отрицательных температурах включение MTC-х можно производить только после выдержки его в течение 24 ч. при температуре не ниже 20°C.

#### 10. Сведения об изготовителе

Изготовитель: ООО «Плазма-Т». Тел.: +7 (800) 444-1708 E-mail: info@plazma-t.ru; http://www.plazma-t.ru +7 (499) 444-1708


#### Приложение

#### Описание клеммников МТС-х

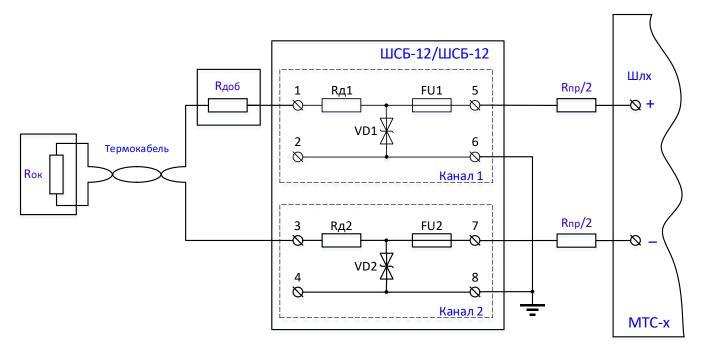

| Клеммник            |     | Описание                              | Примечание     |  |
|---------------------|-----|---------------------------------------|----------------|--|
| PWR1 +              | +   | Вход электропит. постоянного тока «+» | 11,530,5 B     |  |
| -                   |     | Вход электропит. постоянного тока «-» | 11,530,5 b     |  |
| Шл1                 | +   | Вход «+» 1 канала (шлейфа)            |                |  |
| шлт                 | 1   | Вход «-» 1 канала (шлейфа)            | Для всех       |  |
|                     | NO  | Перекидной контакт реле «Пожар» 1     | исполнений     |  |
| Пожар 1             | COM | «Общий» контакт реле «Пожар» 1        | исполнении     |  |
|                     | NC  | Перекидной контакт реле «Пожар» 1     |                |  |
| Шл2                 | +   | Вход «+» 2 канала (шлейфа)            |                |  |
| шлг                 | ı   | Вход «-» 2 канала (шлейфа)            | Для исполнений |  |
|                     | NO  | Перекидной контакт реле «Пожар» 2     | MTC-2          |  |
| Пожар 2 СОМ         |     | «Общий» контакт реле «Пожар» 2        | MTC-3          |  |
|                     | NC  | Перекидной контакт реле «Пожар» 2     |                |  |
| Шл3                 | +   | Вход «+» 3 канала (шлейфа)            |                |  |
| шло                 | ı   | Вход «-» 3 канала (шлейфа)            | Только для     |  |
|                     | NO  | Перекидной контакт реле «Пожар» 3     | исполнения     |  |
| Пожар 3 СОМ         |     | «Общий» контакт реле «Пожар» 3        | MTC-3          |  |
|                     | NC  | Перекидной контакт реле «Пожар» 3     |                |  |
| NO Перекидной       |     | Перекидной контакт реле «Авария»      | 125VAC/        |  |
| Авария <sup>2</sup> | COM | «Общий» контакт реле «Авария»         | 0,5 A;         |  |
|                     | NC  | Перекидной контакт реле «Авария»      | 24VDC/1A       |  |

 $^{2}$  реле «Авария» при отсутствии аварии включается, при наличии аварии выключается.

#### Схемы подключения термокабеля к каналам МТС-х



- \* для исполнения 2 и 3
- \*\* для исполнения 3

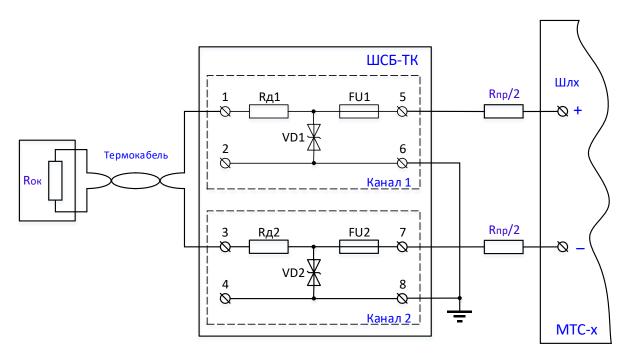



Rок – Оконечный резистор. Roк = 3300 Ом.

Rдоб – Добавочное сопротивление. Rдоб = 510 Ом;

Rпр – Сопротивление подводящих проводов. Rпр ≤ 300 Ом.

## Схема подключения барьера искрозащиты ШСБ-12/ШСБ-12 (новое название ШСБ-12/12)




Rок − Оконечный резистор. Roк = 3300 Ом.

Rдоб – Добавочное сопротивление. Rдоб = 510 Ом;

Rпр – Сопротивление подводящих проводов. Rпр ≤ 170 Ом.

Схема подключения барьера искрозащиты ШСБ-ТК



**Римириченый резистор. Римириченый резистор. Римириченый резистор. Римириченый резистор.** 

Rпр - сопротивление подводящих проводов. Rпр ≤ 300 Ом.

#### Расчет источника питания для МТС-х

Мощность, потребляемая MTC-x в дежурном режиме, не более 0,9 Вт, максимальная — не более 2,0 Вт.

Для обеспечения электропитания MTC-x от источника питания с аккумулятором, расчет емкости аккумулятора необходимо производить по формуле:

$$W = \frac{P}{U} \cdot T$$
 , где

- W величина емкости аккумулятора (A·ч),
- Р мощность, потребляемая MTC-х по постоянному току (Вт),
- U напряжение аккумулятора (B),
- T время работы от аккумулятора (ч).

#### Пример

Расчет необходимой емкости аккумулятора напряжением 12 В для работы в течение 24 часов в дежурном режиме и 3-х часов в режиме сработки.

$$W_{
m деж} = rac{{
m P}_{
m деж}}{U} \cdot {
m T}_{
m деж} = rac{0.9}{12} \cdot 24 = 1.8 \, {
m A} \cdot {
m Y}$$

$$W_{\text{сраб}} = \frac{P_{\text{сраб}}}{U} \cdot T_{\text{сраб}} = \frac{2}{12} \cdot 3 = 0,5 \text{ A} \cdot \text{ч}$$

$$W = W_{\text{деж}} + W_{\text{сраб}} = 1.8 + 0.5 = 2,3 \,\text{A} \cdot \text{ч}$$

В результате расчета получилось, что требуемая емкость аккумулятора должна составлять примерно 2,3  $A \cdot u$  при напряжении 12 B.